390 research outputs found

    Almost Periodic and Asymptotically Almost Periodic Solutions of Liénard Equations

    Get PDF
    The aim of this paper is to study the almost periodic and asymptotically almost periodic solutions on (0,+1) of the Li´enard equation x′′ + f(x)x′ + g(x) = F(t), where F : T ! R (T = R+ or R) is an almost periodic or asymptotically almost periodic function and g : (a, b) ! R is a strictly decreasing function. We study also this problem for the vectorial Li´enard equation. We analyze this problem in the framework of general non-autonomous dynamical systems (cocycles). We apply the general results obtained in our early papers [3, 7] to prove the existence of almost periodic (almost automorphic, recurrent, pseudo recurrent) and asymptotically almost periodic (asymptotically almost automorphic, asymptotically recurrent, asymptotically pseudo recurrent) solutions of Li´enard equations (both scalar and vectorial)

    Charge generation in organic solar cell materials studied by terahertz spectroscopy

    Get PDF
    We have investigated the photophysics in neat films of conjugated polymer PBDTTPD and its blend with PCBM using terahertz time-domain spectroscopy. This material has very high efficiency when used in organic solar cells. We were able to identify a THz signature for bound excitons in neat PBDTTPD films, pointing to important delocalization in those excitons. Then, we investigated the nature and local mobility (orders of magnitude higher than bulk mobility) of charges in the PBDTTPPD:PCBM blend as a function of excitation wavelength, fluence and pump-probe time delay. At low pump fluence (no bimolecular recombination phenomena), we were able to observe prompt and delayed charge generation components, the latter originating from excitons created in neat polymer domains which, thanks to delocalization, could reach the PCBM interface and dissociate to charges on a time scale of 1 ps. The nature of the photogenerated charges did not change between 0.5 ps and 800 ps after photo-excitation, which indicated that the excitons split directly into relatively free charges on an ultrafast time scale

    Excitonic Funneling in Extended Dendrimers with Non-Linear and Random Potentials

    Full text link
    The mean first passage time (MFPT) for photoexcitations diffusion in a funneling potential of artificial tree-like light-harvesting antennae (phenylacetylene dendrimers with generation-dependent segment lengths) is computed. Effects of the non-linearity of the realistic funneling potential and slow random solvent fluctuations considerably slow down the center-bound diffusion beyond a temperature-dependent optimal size. Diffusion on a disordered Cayley tree with a linear potential is investigated analytically. At low temperatures we predict a phase in which the MFPT is dominated by a few paths.Comment: 4 pages, 4 figures, To be published in Phys. Rev. Let

    (Quantum) Space-Time as a Statistical Geometry of Fuzzy Lumps and the Connection with Random Metric Spaces

    Get PDF
    We develop a kind of pregeometry consisting of a web of overlapping fuzzy lumps which interact with each other. The individual lumps are understood as certain closely entangled subgraphs (cliques) in a dynamically evolving network which, in a certain approximation, can be visualized as a time-dependent random graph. This strand of ideas is merged with another one, deriving from ideas, developed some time ago by Menger et al, that is, the concept of probabilistic- or random metric spaces, representing a natural extension of the metrical continuum into a more microscopic regime. It is our general goal to find a better adapted geometric environment for the description of microphysics. In this sense one may it also view as a dynamical randomisation of the causal-set framework developed by e.g. Sorkin et al. In doing this we incorporate, as a perhaps new aspect, various concepts from fuzzy set theory.Comment: 25 pages, Latex, no figures, some references added, some minor changes added relating to previous wor

    Disorder and Funneling Effects on Exciton Migration in Tree-Like Dendrimers

    Full text link
    The center-bound excitonic diffusion on dendrimers subjected to several types of non-homogeneous funneling potentials, is considered. We first study the mean-first passage time (MFPT) for diffusion in a linear potential with different types of correlated and uncorrelated random perturbations. Increasing the funneling force, there is a transition from a phase in which the MFPT grows exponentially with the number of generations gg, to one in which it does so linearly. Overall the disorder slows down the diffusion, but the effect is much more pronounced in the exponential compared to the linear phase. When the disorder gives rise to uncorrelated random forces there is, in addition, a transition as the temperature TT is lowered. This is a transition from a high-TT regime in which all paths contribute to the MFPT to a low-TT regime in which only a few of them do. We further explore the funneling within a realistic non-linear potential for extended dendrimers in which the dependence of the lowest excitonic energy level on the segment length was derived using the Time-Dependent Hatree-Fock approximation. Under this potential the MFPT grows initially linearly with gg but crosses-over, beyond a molecular-specific and TT-dependent optimal size, to an exponential increase. Finally we consider geometrical disorder in the form of a small concentration of long connections as in the {\it small world} model. Beyond a critical concentration of connections the MFPT decreases significantly and it changes to a power-law or to a logarithmic scaling with gg, depending on the strength of the funneling force.Comment: 13 pages, 9 figure

    Dynamics & Predictions in the Co-Event Interpretation

    Get PDF
    Sorkin has introduced a new, observer independent, interpretation of quantum mechanics that can give a successful realist account of the 'quantum microworld' as well as explaining how classicality emerges at the level of observable events for a range of systems including single time 'Copenhagen measurements'. This 'co-event interpretation' presents us with a new ontology, in which a single 'co-event' is real. A new ontology necessitates a review of the dynamical & predictive mechanism of a theory, and in this paper we begin the process by exploring means of expressing the dynamical and predictive content of histories theories in terms of co-events.Comment: 35 pages. Revised after refereein

    Light to Shape the Future: From Photolithography to 4D Printing

    Get PDF
    Over the last few decades, the demand of polymeric structures with well-defined features of different size, dimension, and functionality has increased from various application areas, including microelectronics, biotechnology, tissue engineering, and photonics, among others. The ability of light to control over space and time physicochemical processes is a unique tool for the structuring of polymeric materials, opening new avenues for technological progress in different fields of application. This article gives an overview of various photochemical reactions in polymers, photosensitive materials, and structuring techniques making use of light, and highlights most recent advances, emerging opportunities, and relevant applications

    Resist materials for 157-nm microlithography: an update

    Get PDF
    Fluorocarbon polymers and siloxane-based polymers have been identified as promising resist candidates for 157 nm material design because of their relatively high transparency at this wavelength. This paper reports our recent progress toward developing 157 nm resist materials based on the first of these two polymer systems. In addition to the 2-hydroxyhexafluoropropyl group, (alpha) -trifluoromethyl carboxylic acids have been identified as surprisingly transparent acidic functional groups. Polymers based on these groups have been prepared and preliminary imaging studies at 157 nm are described. 2-Trifluoromethyl-bicyclo[2,2,1] heptane-2-carboxylic acid methyl ester derived from methyl 2-(trifluoromethyl)acrylate was also prepared and gas-phase VUV measurements showed substantially improved transparency over norbornane. This appears to be a general characteristic of norbornane-bearing geminal electron-withdrawing substituents on the 2 carbon bridge. Unfortunately, neither the NiII nor PdII catalysts polymerize these transparent norbornene monomers by vinyl addition. However, several new approaches to incorporating these transparent monomers into functional polymers have been investigated. The first involved the synthesis of tricyclononene (TCN) monomers that move the bulky electron withdrawing groups further away from the site of addition. The hydrogenated geminally substituted TCN monomer still has far better transparency at 157 nm than norbornane. The second approach involved copolymerizing the norbornene monomers with carbon monoxide. The third approach involved free-radical polymerization of norbornene monomers with tetrafluoroethylene and/or other electron-deficient comonomers. All these approaches provided new materials with encouraging absorbance at 157 nm. The lithographic performance of some of these polymers is discussed

    Correlation of cutaneous tension distribution and tissue oxygenation with acute external tissue expansion

    Get PDF
    Today, the biomechanical fundamentals of skin expansion are based on viscoelastic models of the skin. Although many studies have been conducted in vitro, analyses performed in vivo are rare. Here, we present in vivo measurements of the expansion at the skin surface as well as measurement of the corresponding intracutaneous oxygen partial pressure. In our study the average skin stretching was 24%, with a standard deviation of 11%, excluding age or gender dependency. The measurement of intracutaneous oxygen partial pressure produced strong inter-individual fluctuations, including initial values at the beginning of the measurement, as well as varying individual patient reactions to expansion of the skin. Taken together, we propose that even large defect wounds can be closed successfully using the mass displacement caused by expansion especially in areas where soft, voluminous tissue layers are present

    Branched Polymeric Media: Perchlorate-Selective Resins from Hyperbranched Polyethyleneimine

    Get PDF
    Perchlorate (ClO_4^–) is a persistent contaminant found in drinking groundwater sources in the United States. Ion exchange (IX) with selective and disposable resins based on cross-linked styrene divinylbenzene (STY-DVB) beads is currently the most commonly utilized process for removing low concentrations of ClO_4^– (10–100 ppb) from contaminated drinking water sources. However, due to the low exchange capacity of perchlorate-selective STY-DVB resins (0.5–0.8 eq/L), the overall cost becomes prohibitive when treating groundwater with higher concentration of ClO_4^– (e.g., 100–1000 ppb). In this article, we describe a new perchlorate-selective resin with high exchange capacity. This new resin was prepared by alkylation of branched polyethyleneimine (PEI) beads obtained from an inverse suspension polymerization process. Batch and column studies show that our new PEI resin with mixed hexyl/ethyl quaternary ammonium chloride exchange sites can selectively extract trace amounts of ClO_4^– from a makeup groundwater (to below detection limit) in the presence of competing ions. In addition, this resin has a strong-base exchange capacity of 1.4 eq/L, which is 1.75–2.33 times larger than those of commercial perchlorate-selective STY-DVB resins. The overall results of our studies suggest that branched PEI beads provide versatile and promising building blocks for the preparation of perchlorate-selective resins with high exchange capacity
    corecore